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Definition of the problem and relevance 

Bézout’s theorem is one of the key theorems of algebra because it describes the 

relationship between dividing polynomials and finding their roots. In particular, it 

helps to determine whether some number is a root of a given polynomial, and shows 

that if the number c is a root of the polynomial 𝑓(𝑥), then the bipartition (𝑥 − 𝑐) 

divides 𝑓(𝑥) without remainder. This statement can be expressed as a decomposition: 

                                               f(x) = (x − c) ∙ q(x) + r                                            

where 𝑞(𝑥) is the quotient , 𝑟 is the remainder. 2 

The important point of the theorem is that if 𝑟 = 0, then the number 𝑐 is the root 

of 𝑓(𝑥), which means 𝑓(𝑐) = 0.  

This theorem also has practical applications in solving algebraic equations, 

systems of equations, finding roots (multiples among others), and in polynomial 

factorization  

Purpose of work 

The main aims of this thesis are: to justify the importance of Bézout’s theorem, 

practical applications, and a historical and theoretical overview of François Bézout’s 

contribution to the development of algebra and the study of his theorem in 

mathematics.  

Definition and formulation of the theorem 

Bézout’s Theorem  

A number 𝑐 ∈ 𝐾 is a root of a polynomial 𝑓(𝑥) ∈ 𝐾[𝑥] if and only if 𝑓(𝑥) ⋮

(𝑥 − 𝑐) without remainder. 2 

 



 

Historical background  

François Bézout (1736 - 1783) was a French mathematician who made 

significant contributions to algebra and number theory. His work influenced the 

further development of mathematical analysis and algebra, and has applications in 

modern mathematics, especially in field theory and algebraic geometry. 

One of François Bézout’s most significant results is his polynomial division 

theorem, better known as Bézout’s root theorem. Bézout’s theorem came about as a 

consequence of his studies of the algebraic structure of polynomials, especially their 

decomposition into simpler components (multipliers). 

Bézout’s key contribution lies in his peculiarity of presenting this in analytical 

form, which allowed mathematicians of subsequent generations to use his result in 

various applications, including: factorization of polynomials, finding roots, and 

developing methods for numerical solution of equations. 

Proof of Bézout’s theorem  

The polynomial 𝑓(𝑥) ⋮ (𝑥 − 𝑐) with remainder 𝑟, which can be written as: 

𝑓(𝑥) = (𝑥 − 𝑐) ∙ 𝑞(𝑥) + 𝑟 

where 𝑞(𝑥) is the quotient, 𝑟 is the remainder . When 𝑥 = 𝑐 it will be of the 

form: 

𝑓(𝑐) = (𝑐 − 𝑐) ∙ 𝑞(𝑐) + 𝑟 

𝑓(𝑐) = 0 ∙ 𝑞(𝑐) + 𝑟 =  𝑟 

Hence, 𝑟 = 𝑓(𝑐).  If 𝑓(𝑐) = 0, then 𝑟 = 0 as well, indicating that 𝑓(𝑥) ⋮ (𝑥 −

𝑐). 3 

One of the features of this theorem and its proof is its universality, more 

precisely, the proof applies to polynomials of any degree and quotient from any field 

(ring), also Bézout’s theorem is appreciated for its accessibility and rigorous 

mathematical soundness.  

Application of Bézout’s theorem  

 Example 1.   Consider a cubic equation of the form: 

𝑓(𝑥) = х3 − 10х2 + 27х − 18 = 0 

To find the root of this polynomial, we start by substituting the possible root 

values. Let х0 be the whole root of this equation, hence it must be a divisor of the free 

term (-18). All possible values of the root will be of the form:     

х0 = ±1; ±2; ±3; ±6; ±9; ±18 

Let now х0 = ±1  ⇒    𝑓(−1) = −1 − 10 − 27 − 18 ≠ 0 and  𝑓(1) = 1 −

10 + 27 − 18 = 0 

By theorem, we have that if 𝑓(х0) = 0, then х − х0  is a divisor of  𝑓(𝑥), that is  

⇒ 𝑓(𝑥) ⋮ (𝑥 − 1) 4 

              𝑥3 − 10𝑥2 + 27𝑥 − 18      х − 1  

              𝑥3 − 𝑥2                              х2 − 9х + 18 

                      -9х2 + 27х 

                      -9х2 + 9х 

                          18х − 18  



 

                              18х − 18    

                                          0 

⇒ 𝑓(𝑥) = (𝑥 − 1)(𝑥2 − 9𝑥 + 18) = (𝑥 − 1)(𝑥 − 3)(𝑥 − 6) 

Further without picking the roots, by Bézout’s theorem we have that the given 

polynomial has 3 real, integer roots (1; 3; 6). 

 

Example 2. 5 

Given a parametric polynomial of the form: 𝑓(𝑥) = 2х4 + 𝑝х3 + 3х2 − 𝑞х + 5 

Problem: At what values of p and q is the number х0 = 1 a root of the 

polynomial  𝑓(𝑥) = 2х4 + 𝑝х3 + 3х2 − 𝑞х + 5  of multiplicity greater than 1? 

 The number х0 is a root of a polynomial 𝑓(𝑥) of multiplicity greater than 

1, if and only if 𝑓(х0) = 0 and 𝑓 `(х0) = 0 

In our case, 𝑓 `(𝑥) = 8х3 + 3𝑝х2 + 6х − 𝑞 

Let's make a system:    {
f(1) = 0

f `(1) = 0
    ⇒   {

p − q = 10
3p − q = 14

  ⇒ {
p = 2

q = −8
 

 

Hence, when 𝑝 = 2 𝑞 = −8 , this polynomial has a root (х0 = 1) of multiplicity 

greater than 1.  

Bezu's theorem states that if х0 = 1, then 𝑓(1) = 0. This requirement gives one 

equation relating the parameters 𝑝 and 𝑞. For 𝑥 = 1 to be a root of multiplicity greater 

than 1, it is also necessary that the derivative of 𝑓 `(𝑥) at 𝑥 = 1 also converges to 

zero, i.e. 𝑓 `(1) = 0. This condition leads to a second equation for the parameters 𝑝 

and 𝑞.  

These conditions, expressed as a system of equations, made it possible to find 

specific values of the parameters at which the polynomial 𝑓(𝑥) has the desired form. 

Conclusion: In our study we have considered the conditions under which a 

given number becomes a root of a polynomial with a certain multiplicity, and have 

shown how this can be used to analyze parametric polynomials. This approach is 

important not only in theoretical algebra, but also in applications that require the 

analysis of parametric polynomials or the study of the root structure of equations. 

The application of Bézout’s theorem to modern problems, such as finding 

optimal parameters in systems of equations, emphasizes its relevance. The theorem 

remains a powerful tool in the hands of the mathematician, providing clarity and 

structure in research and enabling the solution of a wide range of problems, from 

algebraic to applied problems. 

Thus, the study and use of Bézout’s theorem contributes to a deeper 

understanding of algebraic structures and allows practical problems in various fields 

of science and engineering to be solved more confidently and accurately. 
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