

"MODERN SCIENTIFIC RESEARCH: TOPICAL ISSUES, ACHIEVEMENTS AND INNOVATIONS"

ОСОБЕННОСТИ ПЕРОКСИДНОГО ОКИСЛЕНИЯ ЛИПИДОВ И АНТИОКСИДАНТНОЙ СИСТЕМЫ У КРЫС С АЛЛОКСАНОВЫМ ДИАБЕТОМ НА ФОНЕ ИНТОКСИКАЦИИ СОЛЯМИ ТЯЖЕЛЫХ МЕТАЛЛОВ

Т.А. Ким З.Ф. Мавлянова О.А. Ким

Казахский национальный медицинский университет им. С.Д.Асфендиярова, Алматы, Казахстан Самаркандский государственный медицинский университет, Самарканд, Узбекистан

Длительное воздействие на организм вредоносных факторов ведут к сбою в адаптивных системах организма и истощению его защитных мезанизмов, приводя к развитию различных заболеваний [1,3,9]. В том числе и сахарного диабета, протекающего на свободно-радикального окисления биосубстратов [2,4,5]. В последние годы особый интерес представляет диабет, развивающийся на фоне отравления солями тяжелых металлов, одними из которых являются хром и свинец [6,7,8]. Но следует отметить, что отсутствует достаточно информации о влиянии соединений тяжелых металлов на развитие и течение сахарного диабета [8,10,12], что определяет актуальность нашего исследования, целью которого явилось изучение особенностей протекания процесса пероксидного окисления липидов и системы антиоксидантной защиты у крыс с аллоксановым диабетом на фоне воздействия солей свинца и хрома.

Материалы и методы: Нами проведен эксперимент на 90 самцах крыс, разделенных в зависимости от вызванной интоксикации на 8 подгрупп: интактные; подгруппа «свинец»; подгруппа «хром», подгруппа «свинец+хром»; подгруппа – аллоксановый диабет у интактных крыс – «контроль»; подгруппа – аллоксановый диабет у крыс, находившихся под воздействием свинца – «свинец+аллоксан»; подгруппа – аллоксановый диабет у крыс, находившихся под воздействием хрома -«хром+аллоксан»; подгруппа – аллоксановый диабет у крыс, находившихся под одновременным воздействием свинца и хрома – «свинец+хром+аллоксан». Забой крыс осуществлялся в условиях эфирного наркоза после 30 суточной затравки металлами, а также на 3 и 14 сутки после введения аллоксана. После декапитации у животных извлекалась печень, промывалась холодным физиологическим раствором и замораживалась, затем готовился 10% гомогенат, где определялось содержание малонового диальдегида, диеновых конъюгатов, активность каталазы супероксиддисмутазы. Концентрацию свинца и хрома в крови крыс определяли в конце 30 суточной затравки методом атомно-эмиссионной спектрометрии с индуктивно связанной плазмой.

Результаты исследования: Экспериментальный аллоксановый диабет, моделированный в условиях комбинированного действия соединений свинца и

"MODERN SCIENTIFIC RESEARCH: TOPICAL ISSUES, ACHIEVEMENTS AND INNOVATIONS"

хрома в отличие от аллоксанового диабета на фоне изолированного их действия, характеризовался уменьшением ферментативной активности супероксиддисмутазы по сравнению с уровнем до введения диабетогена. Совместное действие указанных снижает резистентность β-клеток поджелудочной металлов железы диабетогенному действию аллоксана в большей степени, нежели их изолированное влияние. Изолированное воздействие ацетата свинца привело к увеличению уровня диеновых конъюгатов на 13%, изолированное воздействие бихромата калия – на время как комбинированное влияние свинца и хрома - на 50% по сравнению с интактными крысами. Содержание малонового диальдегида в группе «свинец» и в группе «хром» увеличилось на 13%, в группе «свинец+хром» – на 68% по отношению к интактным животным. Усиление процессов пероксидного окисления липидов в клетках печени привело к активации супероксиддисмутазы, активность которой в группе «свинец» увеличилась на 8%, в группе «хром» - на 21%, в группе «свинец+хром» – на 45% по сравнению с интактными крысами. Тогда как изолированное воздействие свинца и хрома практически не повлияло на ферментативную активность каталазы, а комбинированное влияние металлов привело к увеличению активности каталазы на 13% по сравнению с интактными животными.

Заключение: Таким образом, изолированное воздействие, как свинца, так и хрома примерно в одинаковой степени активирует процессы пероксидного окисления липидов в печени животных, не влияет на ферментативную активность каталазы, но при этом введение бихромата калия на 12% больше активирует супероксиддисмутазу, чем воздействия ацетата свинца. Комбинация указанных металлов активизирует процессы пероксидного окисления липидов и активность супероксиддисмутазы в большей степени, чем изолированное воздействие металлов, и в отличие от изолированного действия свинца и хрома, комбинация металлов повышает активность каталазы.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ:

- 1. Худойкулова Ф. В. и др. the structure, age features, and functions of hormones. pedagog, 1 (5), 681-688.-2023.
- 2. Мельник Ю.П. Процессы свободнорадикального перекисного окисления липидов и активации антиоксидантной системы при воздействии свинца // Медицина труда и промышленной экологии. 2016. №5 С. 12-14.
- 3. Мавлянова 3. Ф., Высогорцева О. Н., Собирова Г. Н. Особенности разработки программ физической активности для пожилых. 2022.
- 4. Румянцева Г.И., Димитриев Д.А. Методологические основы совершенствования мониторинга влияния антропогенных факторов окружающей среды на здоровье населения // Гигиена и санитария. 2021. №6. С. 3-5.

"MODERN SCIENTIFIC RESEARCH: TOPICAL ISSUES, ACHIEVEMENTS AND INNOVATIONS"

- 5. Губский Ю.И. Токсикологические последствия окислительной модификации белков при различных патологических состояниях (обзор литературы) / Журнал АМН Украины. 2018. 814(7). С.49-54.
- 6. Балаболкин М.И., Клебанова Е.М., Креминская У.М. Лечение сахарного диабета и его осложнений. Руководство для врачей М.- 2015.-512 с.
- 7. Umirova S. M., Matmurodov R. J. Features of early diagnosis and treatment of the diabetic polyneuropathy in adults //medicine new day _ Avicenna-med. uz. -2022. T. 6. C. 44.
- 8. Матмуродов Р. Ж., Умирова С. М. Результаты применения комбилепена табса в лечении диабетической полинейропатии у лиц молодого возраста //Journal of cardiorespiratory research. № SI-1. -2021.
- 9. Фролов В.А. Экологическая патофизиология // Патологическая физиология и экспериментальная терапия. 2016. №4. С. 2-5.
- 10. Абдусаломова М. А., Мавлянова З. Ф., Ким О. А. Орқа мия ва умуртқа поғонасининг бўйин қисмининг туғруқ жароҳатлари билан беморларнинг диагностикасида электронейромиографиянинг ўрни //журнал биомедицины и практики. 2022. Т. 7. №. 2.
- 11. Mamasharifovich M. S., Anatolevna K. I. M. O. Ёшларда биоимпедансметрияга асосланган холда нутритив холатни бахолаш //journal of biomedicine and practice. -2022. T. 7. №. 4.
- 12. Kodirovich B. F., Farkhadovna M. Z., Zohidzhonovna R. М. Взгляд на организационные и современные патогенетические основы развития остеоартроза //Journal of biomedicine and practice. -2022.-T. 7. №. 1.
- 13. Уразбахтина Ю. О. и др. Актуальность внедрения информационных систем в образовательный процесс //Инновационные методы и ІТ-технологии обучения и воспи. 2022. С. 205.