

## "PROBLEMS AND PROSPECTS FOR THE IMPLEMENTATION OF INTERDISCIPLINARY RESEARCH"



### ПОКАЗАТЕЛИ ДЛИНЫ ВОЛОКНА ДЛЯ НЕКОТОРЫХ СОРТОВ И ЛИНИИ ХЛОПКА

#### Халиков К.К

Докторант Института генетики и экспериментальной биологии **Эшонкулова Д.Ш** 

Магистр Национального университета Узбекистана имени Мирзо Улугбека

Одним важнейших факторов. стимулирующих Аннотация: хлопководства. выведение внедрение является развитие производство сортов с комплексом хозяйственно ценных признаков. При этом необходимо учитывать существующие негативные связи между хозяйственными качественными признаками волокна. которые препятствуют их одновременному улучшению.

**Ключевые слова**: образцы сортов C-6524 и Генофонд-2, линии A-800 и 101105, программа ANOVA,

Хлопок выращивали тысячи лет в основном из-за его волокна и подвергали длительному процессу естественного и искусственного отбора. Одним из важных показателей хлопкового волокна является его длина и урожайность. Известно, что качество волокна учитывается как один из основных показателей хозяйственных признаков при отборе [1].

В исследованиях использовали образцы сортов С-6524 и Генофонд-2 и линии А-800 и 101105. Математико-статистический анализ проводили в программе ANOVA.

В результате были изучены показатели длины волокон исследуемых образцов. При этом самый высокий показатель в родительских образцах был у сорта Генофонд-2 и составил 35,2 мм. Самое низкое значение было 101105, в среднем 26,0 мм. Напротив, длина 1 волокна составила 29,8 мм у А-800 и 33,6 мм у С-6524 (рис. 1).



## "PROBLEMS AND PROSPECTS FOR THE IMPLEMENTATION OF INTERDISCIPLINARY RESEARCH"



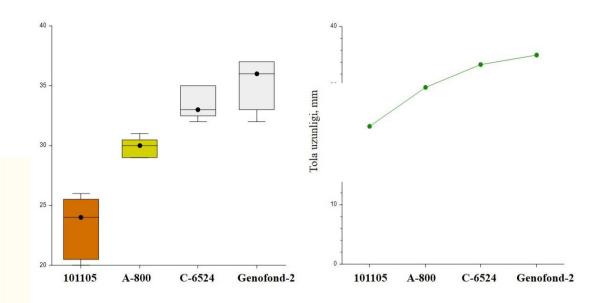



Рисунок-1. Длина волокна (м.м).

Самый высокий показатель длины волокон в гибридных комбинациях F1 наблюдался у гибридов, использующих C-6524 в качестве материнского. При этом длина волокна составила 33,2 мм в комбинации C-6524×A-800 и 32,0 мм в комбинации C-6524×101105. Комбинации с использованием в качестве маточника сорта Генофонд-2: 31,0 мм у Генофонд-2×A-800 и 29,3 мм у комбинации Генофонд-2×101105. Уровень наследуемости в гибридных сочетаниях (hp=0,7; hp=0,6; hp=-0,5; hp=-0,3) показал состояние отрицательного доминирования в гибридных сочетаниях, полученных с сортом Генофонд-2 [2,3]. (Таблица 1).

## Параметры длины волокон в родительских образцах и гибридных комбинациях F<sub>1</sub>.

| Гибридные                          | Длина волокна, мм      |                 |     |      |     |  |  |  |  |
|------------------------------------|------------------------|-----------------|-----|------|-----|--|--|--|--|
| комбинации и их родительские формы | $\bar{x} \pm S\bar{x}$ | ограничен<br>ие | S   | V%   | hp  |  |  |  |  |
| 1                                  | 2                      | 3               | 4   | 5    | 6   |  |  |  |  |
| Родительские формы                 |                        |                 |     |      |     |  |  |  |  |
| C-6524                             | 33,6 ± 0,4             | 32,0-35,0       | 1,3 | 3,8  | -   |  |  |  |  |
| Genofond-2                         | 35,2 ± 0,7             | 32,0-37,0       | 2,0 | 5,8  | -   |  |  |  |  |
| A-800                              | 29,8 ± 0,3             | 29,0-31,0       | 0,8 | 2,6  | -   |  |  |  |  |
| 101105                             | 26,0 ± 1,3             | 21,0-26,0       | 3,8 | 14,7 | -   |  |  |  |  |
| Гибриды F₁                         |                        |                 |     |      |     |  |  |  |  |
| C-6524× A-800                      | 33,2 ± 0,3             | 31,0-34,0       | 1,0 | 3,1  | 0,7 |  |  |  |  |
| C-6524×101105                      | $32,0 \pm 0,5$         | 30,0-34,0       | 1,4 | 4,4  | 0,6 |  |  |  |  |



## "PROBLEMS AND PROSPECTS FOR THE IMPLEMENTATION OF INTERDISCIPLINARY RESEARCH"



| Genofond-2× A-800 | 31,0 ± 0,3 | 29,0-32,0 | 1,0 | 3,4 | -0,5 |
|-------------------|------------|-----------|-----|-----|------|
| Genofond-2×101105 | 29,3 ± 0,7 | 26,0-32,0 | 2,3 | 7,7 | -0,3 |

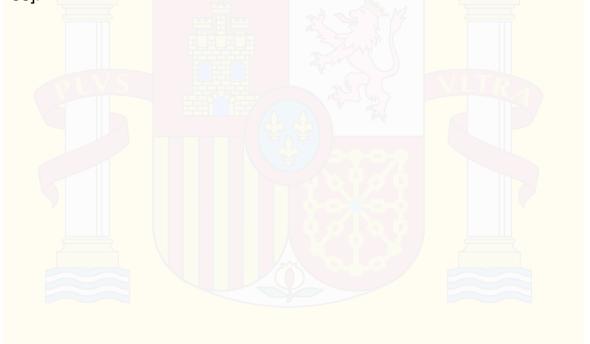
Показатели длины волокон гибридных комбинаций  $F_2$  были разделены на 6 классов, в том числе значения в диапазоне 25,1-37,0. Самый высокий показатель был у комбинации C-6524×A-800, который составил 30,4 мм. В комбинации C-6524×101105 она составила 29,6 мм. В комбинации Генофонд-2×101105 этот показатель составил 29,8 мм, а в комбинации Генофонд-2×A-800 – 29,7 мм

Передача признака потомству во всех сочетаниях средняя (соответственно h2 = 0.59; h2 = 0.30; h2 = 0.30).

|                            |                               |        | Классы по длине волокна (мм), <i>n</i> = 2 |                   |                       |                       |                       |                        |     |     |      |
|----------------------------|-------------------------------|--------|--------------------------------------------|-------------------|-----------------------|-----------------------|-----------------------|------------------------|-----|-----|------|
| Гибриднык<br>омбинаци<br>и | Коли<br>ество<br>расто<br>ний | )<br>1 | 27,1<br>-<br>29,0                          | 29,1<br>-<br>31,0 | 31,<br>1-<br>33,<br>0 | 33,<br>1-<br>35,<br>0 | 35,<br>1-<br>37,<br>0 | $\bar{x} \pm S\bar{x}$ | S   | V%  | h²   |
| 1                          | 2                             | 3      |                                            | 4                 |                       | 5                     | 6                     | 7                      | 8   | 9   | 10   |
| Гибриды F <sub>2</sub>     |                               |        |                                            |                   |                       |                       |                       |                        |     |     |      |
| C-6524×<br>A-800           | 100                           | 15     | 13                                         | 22                | 20                    | 30                    | <del>,</del> 5°       |                        |     |     |      |
|                            | 100                           | 15,0   | 13,0                                       | 22,<br>0          | 20,<br>0              | 30,<br>0              | -                     | 30,4 ± 0,8             | 2,5 | 8,2 | 0,59 |
| C-6524×                    | 100                           | 32     | 30                                         | 38                |                       | -                     | -                     |                        |     |     |      |
| 101105                     | 100                           | 32,0   | 30,0                                       | 38,<br>0          | -                     | -                     | -                     | 29,6 ± 0,7             | 2,0 | 6,8 | 0,30 |
| Genofond-<br>2 ×A-800      | 100                           | -      | 17                                         | 43                | 40                    | -                     | -                     |                        |     |     |      |
|                            | 100                           | -      | 17,0                                       | 43,<br>0          | 40,<br>0              | -                     | -                     | 29,7 ± 0,4             | 1,3 | 4,5 | 0,77 |
| Genofond-<br>2×101105      | 100                           | 20     | 22                                         | 33                | 25                    | -                     | -                     |                        |     |     |      |
|                            | 100                           | 20,0   | 22,0                                       | 33,<br>0          | 25,<br>0              | -                     | -                     | 29,8 ± 0,7             | 2,0 | 6,9 | 0,34 |

Параметры длины волокна в гибридных комбинациях F2 Таблица 2




# "PROBLEMS AND PROSPECTS FOR THE IMPLEMENTATION OF INTERDISCIPLINARY RESEARCH"



На оснавании полученных данных можно прийти к заключению, что по результатам исследований показатели длины волокна в родительских образцах были у сорта Генофонд-2, а наименьший показатель составил 101105, в F1 этот показатель наблюдался у гибридов с использованием С-6524 в качестве матери. В гибридных комбинациях F2 самый высокий показатель длины волокна был у комбинации C-6524 х A-800.

### ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА:

- 1. Алиходжаева С. С., Усманов С. А., Кахарова К. М. Характеристика полухлопчатника с натуральными окрашенными волокнами. / Современные тенденции развития аграрного комплекса. с. Соленое Займище 2016. ул. 865.
- 2. Доспехов Б.А. Методика полевого опита.- М.: Агропромиздат, 1985.- 351 с.
- 3. Эгамбердиев А.Э., Ибрагимов Ш.И., Амантурдиев А.Б. Хлопководство, семеноводство и биология. - Ташкент: Наука, 2009. - С. 52-53].

