THE ROLE AND BENEFITS OF ARTIFICIAL INTELLIGENCE TECHNOLOGY FOR DOPPLER FRACTURE DIAGNOSIS IN MEDICINE
Keywords:
Keywords: artificial intelligence technology, Doppler diagnostics, bone fractures, circulatory disorders, diagnostic accuracy, artificial intelligence algorithms, data processing.Abstract
Abstract: This article examines the applications of artificial intelligence technology to the diagnosis of fracture and internal organs using Doppler, which is a promising area of research in medicine. Doppler technology is used to measure the velocity of blood flow within tissues and organs by using ultrasonic waves. Artificial intelligence can be used to process Doppler data and help diagnose various diseases. Ultrasound can be considered a valuable diagnostic tool for first-line bone assessment, especially in certain conditions without direct access to X-ray images or in acute conditions.
References
REFERENCES:
Gao L, Gao X, Li Q, Chen Z, Chen L, Chen Y, et al. (2018). Application of artificial intelligence in medical ultrasound imaging. J Med Syst. 42(8):146. doi: 10.1007/s10916-018-0992-2.
Khan S, Uddin S, Mustafa F, Haq IU, Khan W, Ullah I, et al. (2020). Role of artificial intelligence in medical ultrasonography: A comprehensive review. J Med Syst. 44(2):34. doi: 10.1007/s10916-019-1545-5.
Kuppili V, Biswas M, Sreekumar A, Suri HS, Khanna NN (2019). Role of machine learning and deep learning in ultrasound-based clinical decision support systems. J Med Syst. 43(3):64. doi: 10.1007/s10916-019-1192-9.
Li H, He L, Yu X, Zhang Y, Wang L (2021). Artificial intelligence for ultrasound-based diagnosis of soft tissue injuries: A systematic review and meta-analysis. J Med Syst. 45(2):15. doi: 10.1007/s10916-020-01672-8.
Shiraishi J, Li Q, Appelbaum D, Pu Y, Wang X, Takagi H, et al. (2020). Artificial intelligence for detection of vertebral fractures on dual-energy X-ray absorptiometry: a comparison with radiologist readings. J Med Syst. 44(1):12. doi: 10.1007/s10916-019-1492-1.
Wang Y, Wang L, Gao Z, Xia Y, Sun X, Chen W, et al. (2020). Deep learning-based framework for diagnosis of bone fractures with ultrasound imaging. J Med Syst. 44(11):192. doi: 10.1007/s10916-020-01681-7.
Yang Z, Chen L, Dai Z, Zhang H, Xie B, Fang X (2021). A deep learning-based method for the automatic detection of intrahepatic calculi on ultrasound images. J Med Syst. 45(4):46. doi: 10.1007/s10916-021-01777-3.
Aggarwal N, Gupta S. Applications of artificial intelligence in healthcare. J Family Med Prim Care. 2019;8(7):2328-2331. doi:10.4103/jfmpc.jfmpc_545_19
Sharifian R, Kiani A, Rahmani S, et al. Machine learning in ultrasound imaging: a review. Biomed Eng Lett. 2021;11(1):1-20. doi:10.1007/s13534-020-00197-5
Cheng JZ, Ni D, Chou YH, et al. Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci Rep. 2016;6:24454. doi:10.1038/srep24454